
Pervasive Service Model: Using OWL-S to extend Service Model
in OSGi Service Platform

Chi-Wei Huang, Kuen-Min Lee
Industrial Technology Research Institute, Taiwan

{ireta_huang, allen_lee}@itri.org.tw

摘要摘要摘要摘要

本篇論文提出一個新的服務模組:普遍性服務模

組 (PSM), 它主要使用 OWL-based Web Service
Ontology (OWL-S) 的方法來改善原先在 Open
Services Gateway Initiative (OSGi) 下的服務模組.
這個新服務模組的最大特色就是, 服務提供者可以
透過它來跟家庭裡面目前正在運作的服務溝通, 進
而開發出整合性的新服務. 同時它也允許使用者
可以自行組合家庭裡的服務成為一個工作項目來

執行或者是排程定時執行. 除了系統預設的使用
情境之外, 使用者也可以依據本身的需求來修改這
些使用情境 , 或是自行開發一個新的使用情境 .
PSM 的目的就是希望家庭裡的服務平台是能夠真
正的以人為中心來設計, 讓使用者可以很彈性, 很
方便, 很隨性的使用家裡面現有的服務, 而不是去
遷就系統所提供的使用方式, 而改變自己的使用習
慣.

關鍵詞關鍵詞關鍵詞關鍵詞：OWL-S, OSGi, Pervasive Service, Scenario.

Abstract

This paper proposes an approach which is using

OWL-based Web Service Ontology (OWL-S) to
extend the original service model in the framework of
Open Services Gateway Initiative (OSGi) as a new
model called Pervasive Service Model (PSM). This
approach can help service providers to develop
integrated services by negotiating with various home
services. It also allows user to execute and schedule
daily tasks by using or combining existed home
appliances and services. Except the system default
scenarios, user now can develop and modify
user-defined scenarios based on needs. What PSM
will achieve is such a human-centric, flexible and
integrated rich services environment applying to
home.

Keywords: OWL-S, OSGi, Pervasive Service, Scenario.

1. Introduction

For information integration, family is quite a
special and complicated environment as compared
with office and factory. The whole infrastructure for
all devices, network and communication interface can

not be clearly defined at the beginning. When the
demand appears, various kinds of appliances or
services will just enter the family one by one. For
example, security system is needed when theft-proof
requirement is appeared, and health-care system is
needed if there are elders in the family needed to look
after… etc. As a result, when family becomes a rich
environment with various services flooded in, making
these services to be reusable, produce more add-on
values, and customize based on every family needs
will be a big issue. The OSGi Service Platform
specification delivers an open, common architecture
for developers and service providers to develop,
deploy and manage services in home networks and
devices [1]. Each service in OSGi is not an
independent system anymore. Services can
cooperate inner or cross this service platform. But
the shortage is this communication behavior is
programmed, predefined and not changeable. It is
still not a human-centric designed, but somehow the
most important role in the family is people. No
matter how strong the system is, it can’t be applied to
the whole family in order to satisfy everybody’s
requirements. Thus a good design is not to solve all
requirements, but a way to let user used to solve all
what he needs. There should be a mechanism,
supplied by an open service platform, to let user can
develop his own system and work flow based on his
requirement by using and compositing existed
services in home.

This paper presents Pervasive Service Model (PSM)
that fulfills these requirements. In what follows, we
will discuss some background and technologies on
session two, then propose a new model, PSM, to
solve all problems on session three which includes the
model design, management services and an
implementation example, and finally make a
conclusion on session four.

2. Background

This section will briefly describe related
background technologies and other researchers’
works in order to solve the service integration and
adaptation issue which is highlighted in the abstract
and introduction sections.

TANET2007臺灣網際網路研討會論文集〔一〕

2.1 The Service Model in OSGi

OSGi is a kind of middleware. Each application
in OSGi framework is called bundle. The OSGi’s
Service Model defines a dynamic collaborative model
that bundles can register services, search for them,
receive notifications when their registration state
changes, or use other registered services [1]. It has
the following essentials:

� Collaborative: The service layer must provide a

mechanism for bundles to publish, find, and bind to
each other’s services without having a priori
knowledge of those bundles.

� Dynamic: The service mechanism must be able to
handle changes in the outside world and underlying
structures directly.

� Secure: It must be possible to restrict access to
services.

� Reflective: Provide full access to the Service
Layer’s internal state.

� Versioning: Provide mechanisms that make it
possible to handle the fact that bundles and their
services evolve over time.

� Persistent Identifier: Provide a means for bundles
to track services across Framework restarts.

This Service Model is well defined and mature

enough for using, but it still has shortage of a service
in OSGi is just a normal Java object, and the
necessary step of service registration is depended on
one or more Java interfaces. If there is a service
implemented by none Java technology or existed on
another services platform, it can’t access services
registered in OSGi.

2.2 OWL-S: Semantic Markup for Web
Services

OWL-S [3] is an ontology language, within the
OWL–based [2] framework of the Semantic Web, for
describing Web services. It will enable users and
software agents to automatically discover, invoke,
compose, and monitor Web resources offering
services, under specified constraints.

In this paper, OWL-S is used not only on web
service, but also on UPnP services, Java services…
etc. OWL-S will be a kind of common language
between various home services.

2.3 UPnP: Universal Plug and Play

UPnP [4] is a set of computer network protocols
which allow devices to connect seamlessly and to
simplify the implementation of networks in the home
(data sharing, communications, and entertainment)
and corporate environments. As for services, it is
the most adopted solution for integration technology
in home if services can also plug and play for users.

2.4 MONET: Mathematics on the Net

The aim of the MONET is to create a semantic web
to the world of mathematical software, using
sophisticated algorithms to match the characteristics
of a problem to the advertised capabilities of available
services and then invoking the chosen services
through a standard mechanism. The resulting
framework will be powerful, flexible and dynamic,
yet robust and easy to navigate, putting
state-of-the-art algorithms at the disposal of users
anywhere in the world [5].

2.5 Task Computing

Task computing is a new paradigm for how users
interact with devices and services. It allows users to
focus on the tasks they want to accomplish with
computing devices rather than how to accomplish
them [6]. It aims to empower non-expert users with
the ability to perform complex tasks in
information-rich, device-rich, and service-rich
environments. To achieve this, it exposes the
functionality in such environments as Semantic Web
services, which in turn the user can discover and
arbitrarily compose [7]. It also combines UPnP for
Semantic Service Discovery Mechanism, OWL-S for
the semantic service description, and UPnP and Web
Services for service invocations.

3. Pervasive Service Model

This paper proposes a new model called Pervasive
Service Model (PSM) which enhances the original
OSGi Service Model to let services not only limited
on Java-based services but all home services.
Pervasive service means a common, widespread,
intuitional home service which includes UPnP service,
web service, and original OSGi service… etc. Due
to home is such a rich environment which is flooded
with various and heterogeneous services, PSM is
needed for managing and using all kinds of pervasive
services. To make use of all pervasive services, a
computer-interpretable description for pervasive
service is needed. That’s OWL-S, a Semantic Web
markup language. The deference is OWL-S in PSM
is not only used for web services but all services in
home, pervasive services, for service declaration and
description. It also proposes a mechanism to let
pervasive services can perform registration,
invocation and cooperation with each other.

3.1 Essentials

The PSM has following essentials based on the
design of OWL-S ontology and OSGi Service Model:

� Registry Management: Provide a mechanism for

service discovery, registration, un-registration and
removing.

TrackB-網路服務與應用

� Invoke Management: Provide a mechanism to
search services, retrieve service profile [3] and
service model [3], and execute service as a
collection of remote procedure calls. OWL-S
provides a declarative, computer-interpretable API
that includes the semantics of the arguments to be
specified when executing these calls, and the
semantics of that is returned in messages when the
services succeed or fail. A software agent should
be able to interpret this markup to understand what
input is necessary to invoke the service, and what
information will be returned.

� Composition and Interoperation Management:
Involve the selection, composition, and
interoperation of pervasive services to perform
some complex or customized task. With OWL-S,
software can be written to manipulate these
declarative specifications of the prerequisites and
consequences of individual services, service
compositions and data flow interactions. Then
execute target task automatically.

� Authorization Management: Provide access
privileges for pervasive services, home users,
service providers, and system integration
consulters… etc. This mechanism also includes
the limitation of pervasive service’s visibility and
usability… etc.

3.2 Entities

PSM itself is a management pervasive service
which is designed to manage pervasive services. It
is also a Composite Process [3] composed by three
Atomic Processes [3]: Registry Manager Process,
Event Handler Process and Scenario Invoker Process,
and a set of bundle components as figure 1 shows.

� Registry Manager Process: A facility to process

management request for pervasive services and
return request results.

� Event Handler Process: A facility to process
event registration and dispatch for pervasive
services.

� Scenario Invoker Process: A facility to invoke
system defined or custom defined scenario.

� Service Management Component: A facility to
let Registry Manager Process register and
un-register service, search and retrieve service
profile, and remove service.

� Service Registry Component: Process the
pervasive service’s registration includes registering,
un-registering, and searching services.

� Service Profile Component: Holds and maintains
the pervasive service’s service profile.

� Service Permission Component: Holds the
permission settings for invoking a pervasive
service and retrieving pervasive service profile.

� Service Filter Component: An object that
implements a simple but powerful filter language.
It can select on properties.

� Auto-Discover Component: A process for
performing automated discovery to let Service
Management component can manipulate service
registry.

� Service Event Dispatch Component: An event
holding information about the registration,
notification, or un-registration of a pervasive
service. This component can perform service
listener registration, and event receiving and
dispatching.

� Scenario Management Component: A facility to
let Scenario Invoker Process invoke existed
scenarios, retrieve scenarios description, add or
modify or remove scenarios, and scheduling or
executing scenario.

Figure 1: Component Diagram for PSM

TANET2007臺灣網際網路研討會論文集〔一〕

� Scenario Profile Component: Holds and
maintains the scenario’s description profile.

� Scenario Editor Component: An UI component
to let user can compose pervasive services as a
scenario based on what they want to do within
PSM.

� Scenario Executor Component: A process for
executing or scheduling scenarios.

3.3 Service Management

Basically, PSM uses OSGi as an open service
platform to integrate all kinds of network, services
and appliances in home. Every service follows
PSM’s framework is called a pervasive service and
must have a service profile registered for service
description which includes characteristics,
functionalities, messages, and communication
protocol. Service management is such a mechanism
which manages and maintains all service profiles,
permission configurations, and service registry in
PSM. It provides an interface to discover, search,
register, un-register pervasive services and retrieve
service profile based on permission settings.

3.3.1 Service Invocation

In OWL-S, it defined a method, Service Grounding
[3], to specify the details of how to access the service
with protocol and message formats, serialization,
transport, and addressing. It also suggests using
Web Services Description Language (WSDL) as a
grounding mechanism. By the help of OSGi, PSM
now is not limited on choosing WSDL as the only
grounding. It can have lots of candidate protocol
like SOAP, UPnP as grounding mechanism because
OSGi integrated it and made it happened.

Figure 2: Service Mapping Diagram

3.3.2 Bridge Bundle

In order to let PSM to cover all kinds of services in
home network, corresponding bridge bundle is needed
for mapping or translating original service to
pervasive service. As figure 2 shows, target
mapping service can be an UPnP service, a web
service, an OSGi service, or even a simple Java object.
The bridge bundle should be able to construct a
service profile, clearly specify the service grounding
and register it in PSM. In the other side, this bridge
bundle should be familiar with the target
communication protocol for executing the request
invocation from pervasive services.

3.4 Service Event Handling

In PSM, service events like registration,
modification, notification and un-registration should
be passing between services. Pervasive service can
register target listening event type for particular
pervasive service and PSM will take the responsible
of event dispatching if the target listening event
activated.

3.5 Scenario Management

In OWL-S, a scenario is defined as a composite
service which is composed by atomic or composite
processes by using control constructs [3]. Scenario
is not a behavior a service will do, but a behavior (or
set of behaviors) the user can perform by sending and
receiving a serious of messages. There are two types
of scenario: system defined scenario and custom
defined scenario.

3.5.1 System Defined Scenario

System defined scenario is a predefined scenario
provided by production supplier or system integration
provider. Usually it is bounded with service
delivery. It is designed for the usability of
production, integrated application for a set of
appliance, or a system with particular purpose such as
security, automation, healthcare, or entertainment.
Home appliance is not to be made and produced for
one single purpose. It can play different rules in
different scenario now for more add-on values by
interacting and cooperating with other appliances.

3.5.2 User Defined Scenario

The main purpose of user defined scenario is that
user can properly make use of appliances and services
in home based on what he really needs as time goes
on. User can modify the existing system defined
scenario for special condition and save it as a new one
or totally define a new one based on different
requirement and purpose. Also user can modify the

TrackB-網路服務與應用

existed scenario to apply the changes of new
appliance instead of the original or broken old one.

3.5.3 Scenario Editor

One purpose for all PSM’s foundations is in order
to implement Scenario Editor (SE) to let user can
design scenario and execute it. In SE, pervasive
services can be combined and cooperate with other
pervasive services. As figure 3 shows, SE has a
service list on left top which lists all available
pervasive services and a property list which lists all
related service properties. The main scenario’s task
flow is showed on center and user can drag-and-drop
flow control components presented on left down. A
flow control list on right top lists all flow control
components of current scenario. User can write
expressions or statements related to the target flow
control component at statement editing panel on right
down.

Scenario EditorScenario Editor

Light Sensor
Motion Sensor
Light Control
Fan Control

Service List:

Brightness 240

Property List:

Start

Statement

If-Condition

Then-Condition

End

Brightness < 70

Control Constructs:

Statements:

Figure 3: Scenario Editor

Figure 3 also shows a simple task flow example:

“Auto- Lighting” scenario that will automatically turn
on lamp when the indoor brightness value is lower
then 70. Two pervasive services are used in this
scenario: “Brightness_Sensor” which provides
“GetBrightness” service and “Light_Control” which
provides “LightOn” service. The sample service
profiles are listed bellow:

Brightness_Sensor_Process.owl

<process:AtomicProcess rdf:ID="GetBrightness">
 <process:hasOutput>
 <process:Output ref:ID="Brightness_Value">
 <process:parameterType rdf:resource="&xsd;#integer">

</process:parameterType>
 </process:Output>
 </process:hasOutput>
</process:AtomicProcess>

Brightness_Sensor_Grounding.owl

<grounding:WsdlAtomicProcessGrounding rdf:ID=

"GetBrightnessGrounding">
 <grounding:owlsProcess rdf:resource="#GetBrightness"/>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">

#GetBrightness_PortType</grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">

#GetBrightness_operation</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlOutputMessage rdf:datatype="&xsd;#anyURI">

#GetBrightness_Output</grounding:wsdlOutputMessage>
 <grounding:wsdlOutput>
 <grounding:WsdlOutputMessageMap>
 <grounding:owlsParameter rdf:resource=

"#Brightness_Value"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">

#brightnessValue</grounding:wsdlMessagePart>
 </grounding:WsdlOutputMessageMap>
 </grounding:wsdlOutput>

 <grounding:wsdlReference rdf:datatype="&xsd;#anyURI">
 http://www.w3.org/TR/2001/NOTE-wsdl-20010315
 </grounding:wsdlReference>
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
http://www.itri.org.tw/osgi/psm/BrightnessSensorGrounding.wsdl

 </grounding:wsdlDocument>
</grounding:WsdlAtomicProcessGrounding>

Light_Control_Process.owl

<process:AtomicProcess rdf:ID="LightOn">
 <process:hasInput>
 <process:Input rdf:ID="Lamp_ID">
 <process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string
</process:parameterType>

 </process:Input>
 </process:hasInput>
</process:AtomicProcess>

Light_Control_Grounding.owl

<grounding:WsdlAtomicProcessGrounding

rdf:ID="LightOnGrounding">
 <grounding:owlsProcess rdf:resource="#LightOn"/>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType rdf:datatype="&xsd;#anyURI">

#LightOn_PortType</grounding:portType>
 <grounding:operation rdf:datatype="&xsd;#anyURI">

#LightOn_operation</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

 <grounding:wsdlInputMessage rdf:datatype="&xsd;#anyURI">

#LightOn_Input</grounding:wsdlInputMessage>
 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="#Lamp_ID"/>
 <grounding:wsdlMessagePart rdf:datatype="&xsd;#anyURI">

#lampID</grounding:wsdlMessagePart>

TANET2007臺灣網際網路研討會論文集〔一〕

 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>

 <grounding:wsdlReference rdf:datatype="&xsd;#anyURI">
 http://www.w3.org/TR/2001/NOTE-wsdl-20010315
 </grounding:wsdlReference>
 <grounding:wsdlDocument rdf:datatype="&xsd;#anyURI">
 http://www.itri.org.tw/osgi/psm/LightControlGrounding.wsdl
 </grounding:wsdlDocument>
</grounding:WsdlAtomicProcessGrounding>

The abstract description of this task flow is: first
get brightness value from brightness sensor, compare
this brightness value with 70, and turn on lamp if the
brightness value is lower then 70. SWRL: A
Semantic Web Rule Language [9] is used for rules
presentation. The result scenario profile is listed
bellow:

Auto-Lighting_Scenario.owl

<process:CompositeProcess rdf:ID="AutoLightScenario">
 <process:composedOf>
 <process:Sequence>
 <process:components>
 <process:ControlConstructList>
 <objList:first>
 <process:Perform rdf:ID="GetBrightnessPerform">
 <process:process rdf:resource="#GetBrightness"/>
 <process:hasDataFrom>
 <process:InputBinding>
 <process:valueSource>
 <process:ValueOf>
 <process:theVar rdf:resource=

"#Brightness_Value"/>
 <process:fromProcess rdf:resource=

"&process;#TheParentPerform"/>
 </process:ValueOf>
 </process:valueSource>
 </process:InputBinding>
 </process:hasDataFrom>
 </process:Perform>
 </objList:first>
 <objList:rest>
 <process:ControlConstructList>
 <objList:first>
 <process:If-Then-Else>
 <process:ifCondition>
 <expr:SWRL-Condition rdf:ID=

"IsInLowBrightness">
 <expr:expressionBody rdf:parseType="Literal">
 <swrl:AtomList>
 <rdf:first>
 <swrl:DataRangeAtom>
 <owl:OneOf>
 <owl:DataValue owl:datatype="&xsd;int">

0</owl:DataValue>
 <owl:DataValue owl:datatype="&xsd;int">

70</owl:DataValue>
 </owl:OneOf>

 <ruleml:var>#Brightness_Value</ruleml:var>
 </swrl:DataRangeAtom>
 </rdf:first>

 <rdf:rest rdf:resource="&rdf;#nil"/>
 </swrl:AtomList>
 </expr:expressionBody>
 </expr:SWRL-Condition>
 </process:ifCondition>
 <process:then>
 <process:Perform rdf:ID="LightOnPerform">
 <process:process rdf:resource="#LightOn"/>
 </process:then>
 </process:If-Then-Else>
 </objList:first>
 <objList:rest rdf:resource="&objList;#nil"/>
 </process:ControlConstructList>
 </objList:rest>
 </process:ControlConstructList>
 </process:components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>

4. Conclusions and Future Work

The idea of PSM is to achieve the design of
information integration system should be
human-centric and developed by user’s needs.
Follow the PSM, service provider can focus on home
service development and PSM will be the
communication bridge between user and services. In
the future, we hope PSM can analyze user’s requires
and requests, give service recommendation, and even
execute it automatically without user confirmed. In
Industrial Technology Research Institute (ITRI), we
have already developed a prototype system based on
OSGi Service Platform which integrated home
security, home automation, health care, and
multimedia services. The next step will be to add
PSM and implement it in this integrated system and
translate all demonstrative scenarios. Then the user
will be able to use SE to develop his own scenario
and execute it instead of using system defined
scenario.

5. References

[1] OSGi http://www.osgi.org
[2] OWL http://www.w3.org/TR/owl-features
[3] OWL-S http://www.w3.org/Submission/OWL-S
[4] UPnP http://www.upnp.org
[5] MONET

http://monet.nag.co.uk/cocoon/monet/index.html
[6] Task Computing http://taskcomputing.org
[7] Ryusuke Masuoka, Bijan Parsia, Yannis Labrou

and Evren Sirin, "Ontology-Enabled Pervasive
Computing Applications," IEEE Intelligent
Systems, vol. 18, no. 5, Sep./Oct. 2003, pp. 68-72.

[8] OWL-S 1.1
http://daml.semanticweb.org/services/owl-s

[9] SWRL http://www.w3.org/Submission/SWRL
[10] SWRL 0.6 http://www.daml.org/2004/04/swrl/

TrackB-網路服務與應用

